4th IEEE International Symposium
on System Engineering

Rome, Italy

Presented work:

  • Francesco Santoni, Alessio De Angelis, Antonio Moschitta and Paolo Carbone
    A Distributed Data Acquisition Architecture for Magnetic Positioning Systems

Abstract: We illustrate a devised and partially implemented data acquisition system (DAQ) for a magnetic positioning system (MPS) that is currently under development. This system aims to track position and attitude of an active transmitting coil (TX) supplied with a sinusoidal current, whose generated magnetic field induces tensions on an array of passive receiving coils (RX). The DAQ system has to acquire voltages from all RX coils. These signals are then processed according to a mathematical model in order to estimate the TX coordinates. In order to track the TX in real-time with a good resolution, data acquisition and processing have to be fast. In particular voltages have to be measured simultaneously on all RXs. To achieve this, we opted for a distributed architecture of microcontroller units (MCU). To acquire voltages, each MCU has four analog-to-digital converters (ADC) that can work in parallel. Moreover multiple MCUs can be triggered simultaneously by a single MCU in a master-slave configuration. We used MCUs with a fast dual-core CPU. Each unit can directly process its own acquired signals, then all data are sent to the master MCU, which estimates the coordinates of the TX. According to a preliminary analisys, this tracking system should achieve more than fifty coordinates measurements per second.